25 research outputs found

    A Multicellular Model of Intestinal Crypt Buckling and Fission

    Get PDF
    Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work

    Expansion of Intestinal Epithelial Stem Cells during Murine Development

    Get PDF
    Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points
    corecore